Senin, 05 Mei 2014

PLTU

PEMBANGKIT LISTRIK TENAGA UAP (PLTU)
Turbin adalah mesin penggerak, dimana energi fluida kerja dipergunakan langsung untuk memutar roda/poros turbin. Pada turbin tidak terdapat bagian mesin yang bergerak translasi, melainkan gerakan rotasi. Bagian turbin yang berputar biasa disebut dengan istilah  rotor/roda/poros turbin, sedangkan bagian turbin yang tidak berputar dinamai dengan istilah stator. Roda turbin terletak didalam rumah turbin dan roda turbin memutar poros daya yang digerakkannya atau memutar bebannya (generator listrik, pompa, kompresor, baling-baling, dll).
Didalam turbin fluida kerja mengalami ekspansi, yaitu proses penurunan tekanan dan mengalir secara kontinyu. Penamaan turbin didasarkan pada jenis fluida yang mengalir didalamnya, apabila fluida kerjanya berupa uap maka turbin biasa disebut dengan turbin uap.

PRINSIP KERJA PUSAT LISTRIK TENAGA UAP (PLTU)
Pusat listrik tenaga uap (PLTU) mempunyai bagian-bagian utama seperti:
  1. Turbin uap (steam turbine).
  2. b.      Boiler (steam generator).
  3. Kondensor (condenser).
  4. d.    :  Pompa-pompa (pumps).Prinsip kerja dari pusat listrik tenaga uap (PLTU) didasarkan pada siklus Rankine seperti pada diagram T vs s dan h vs s dibawah ini.
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhnsBmQnY6jkCbcJcpFqJ5qDfzQ9fTlxrL9I5Fgs6g2Sz2Cc4MdNgHUKMiCGj4gTVCh7m-DL9iT9kcOsl5geQ7FGWcDK5k7Dln11qwSrZXP9j5U95pV87wq1035Z510vKDtURu2qiz-aNtA/s320/1.jpg

Turbin uap untuk pembangkit menggunakan siklus uap tertutup, uap yang  telah memutar turbin dengan energinya dikondensasikan kembali menjadi air dan dipompa ke boiler, selanjutnya dipanaskan lagi didalam boiler tersebut. Demikian seterusnya siklus ini terjadi  terus menerus.
Daerah dibawah garis lengkung k – K – k’ pada diagram T – s dan h – s merupakan daerah campuran fasa cair dan uap. Uap didalam daerah tersebut biasanya juga dinamakan uap basah. Garis k – K dinamai garis cair (jenuh), dimana pada dan disebelah kiri garis tersebut air ada dalam fasa cair. Sedangkan garis k – k’ dinamai garis uap jenuh, dimana pada dan disebelah kanan garis tersebut air ada dalam fasa uap (gas). Uap didalam daerah tersebut terakhir biasanya dinamai uap kering. Titik K dinamai titik kritis, dimana temperature kritis dan tekanan kritis. Pada titik kritis keadaan cair jenu adalah identik.
  1. Dari titik 1 ke titik 2 merupakan proses isentropis,didalam pompa.
  2. Dari titik 1 ke titik 2’ dan ke titik 3 merupakan proses pemasukan kalor atau pemanasan pada tekanan konstan didalam boiler/ketel.
  3. Dari titik 3 ke titik 4 merupakan proses ekspansi isentropic didalam turbin atau mesin uap lainnya.
  4. Dari titik 4 ke titik 1 merupakan proses pengeluaran kalor atau pengembunan pada tekanan konstan, didalam kondensor.
Secara sederhana sebuah pembangkit listrik tenaga uap digambarkan seperti pada gambar dibawah.
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEh4liNMMatabFHvM-G9CCXSLn1YMW8LUVF_ggk87vF4z2WIKnRB17BGuvld_zpXvWXzR4nmMvkjAIjk84IUwcBzK7pfYnNllMsQFLZk5yLb0tLZmdMlFmWeNTMFDv4YJm9KR2REtN6nAglJ/s320/2.jpg


4.1     Perbaikan siklus tenaga uap.
Perbaikan siklus tenaga uap dapat dilakukan dengan jalan pemanasan ulang (reheat), dimana setelah uap berekspansi didalam turbin, uap tersebut keluar dari turbin dan dialirkan kedalam alat pemanas lanjut (reheater) yang berada didalam ketel/boiler untuk dipanaskan kembali, kemudian baru uap itu dimasukkan kedalam turbin berikutnya. Dengan demikian uap yang dialirkan ke turbin energinya telah diperbesar dan setelah berekspansi di turbin uap, kondisi akhir uap tekanannya menjadi berkurang (kurang dari 1 atmosfir) didalam kondensor dengan kebasahan yang tertentu. Siklus proses ini seperti ditunjukkan pada gambar dibawah.

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhtq2Vc8mpfaHYLzik48bwQ43z-WhMlKTndD2mAUrWwCVy4AwiEayryalmjT5znB5N_qFxhZAM7zGoy81t_tbeGxff4Fk4AUpHHLgLmP-oqkR8mtP1CfURqQqehqVNi8BWvhyphenhyphenDCR5lq0r0h/s1600/3.jpg


Air laut yang jumlahnya melimpah ruah dipompa oleh CWP (Circulating Water Pump(1) yang sebagian besar dipakai untuk media pendingin di Condenser (6) dan sebagian lagi dijadikan air tawar di Desalination Evaporator (2). Setelah air menjadi tawar, kemudian dipompa olehDistillate Pump (3) untuk kemudian dimasukkan ke dalam Make Up Water Tank (4) yang kemudian dipompa lagi masuk ke sistem pemurnian air (Demineralizer) dan selanjutnya dimasukkan ke dalam Demin Water Tank (5). Dari sini air dipompa lagi untuk dimasukkan ke dalam Condenser bersatu dengan air kondensat sebagai air benam ban. Air kondensat yang kondisinya sudah dalam keadaan murni dipompa lagi dengan menggunakan pompa kondensat, kemudian dimasukkan ke dalam 2 buah pemanas Low Pressure Heater (7) dan kemudian diteruskan ke Deaerator (8) untuk mengeluarkan atau membebaskan unsur O2 yang terkandung dalam air tadi. Selanjutnya air tersebut dipompa lagi dengan bantuan Boiler Feed Pump (9)dipanaskan lagi ke dalam 2 buah High Pressure Heater (10) untuk diteruskan ke dalam boiler yang terlebih dahulu dipanaskan lagi dengan Economizer (11) baru kemudian masuk ke dalamSteam Drum 
(12). Proses pemanasan di ruang bakar menghasilkan uap jenuh dalam steam drum, dipanaskan lagi oleh Superheater (14) untuk kemudian dialirkan dan memutar Turbin Uap (15). Uap bekas yang keluar turbin diembunkan dalam condenser dengan bantuan pendinginan air laut kemudian air kondensat ditampung di hot well.
Bahan bakar berupa residu/MFO dialirkan dari kapal/tongkang (16) ke dalam Pumping House(17) untuk dimasukkan ke dalam Fuel Oil Tank (18). Dari sini dipompa lagi dengan fuel oil pump selanjutnya masuk ke dalam Fuel Oil Heater (19) untuk dikabutkan di dalam Burner (20)sebagai alat proses pembakaran bahan bakar dalam Boiler.
Udara di luar dihisap oleh FDF (Forced Draught Fan) (21) yang kemudian dialirkan ke dalam pemanas udara (Air Heater) (22) dengan memakai gas bekas sisa pembakaran bahan bakar di dalam Boiler (13) sebelum dibuang ke udara luar melalui Cerobong/Stack (23).
Perputaran Generator (24) akan menghasilkan energi listrik yang oleh penguat/exciter tegangan mencapai 11,5 kV, kemudian oleh Trafo Utama/Main Transformater (25) tegangan dinaikkan menjadi 150 kV. Energi listrik itu lalu dibagi melalui Switch Yard (26) untuk kemudian dikirim ke Gardu Induk melalui Transmisi Tegangan Tinggi (27). Kemudian, tenaga listrik itu dialirkan lagi pada para konsumen.

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjcNmtCuOUGGL6MYJvgyNCke7wUhQ6BSTfe54G0YTT8jo2q4t8fLLFASpNSL4-A7nq4CgxGsVGIGzTfln6kZhKb1bvKc2kDUj3dv7BT7uj6Z1gVNkBbGupkLuea4Rmfw7avtiBpskLR-ugZ/s1600/4.jpg


Terdapat 2 (dua) jenis turbin uap yang bisa diaplikasikan didalam pusat listrik tenaga uap, sebagai berikut :
  1. 1.   Turbin Impuls.
Turbin impuls adalah turbin dimana proses ekspansi (penurunan tekanan) dan fluida kerja.uap hanya terjadi didalam nosel atau baris sudu tetapnya saja. Penurunan tekanan uap inilah yang akan menimbulkan terjadinya perubahan kecepatan, dan hal ini terjadi karena sudu gerak berputar maka ada kecepatan relative antara uap dengan sudu gerak.
  1. 2.   Turbin Reaksi.
Turbin rekasi adalah turbin dimana proses ekspansi (penurunan tekanan) terjadi baik didalam baris sudu tetap maupun sudu geraknya. Dalam hal ini baris sudu tetap maupun sudu geraknya berfungsi sebagai nosel (nozzle), sehingga kecepatan relative uap keluar setiap sudu lebih besar dan kecepatan relative uap masuk sudu yang bersangkutan.
Meskipun demikian kecepatan absolute uap keluar sudu gerak lebih kecil dari pada kecepatan absolute uap masuk sudu gerak yang bersangkutan, oleh karena itu sebagian energi kinetiknya diubah menjadi kerja memutar roda turbin. Tekanan uap keluar sudu lebih rendah dan pada tekanan masuk sudu yang bersangkutan, sehingga hal tersebut memperbesar gaya aksial yang terjadi pada rotor turbin tersebut.
Adapun sebagai pendukung pusat listrik tenaga uap ini digunakan beberapa alat bantu (auxiliary equipments) untuk membantu proses siklus turbin uap berjalan dengan baik, seperti :
  1. Sistem pelumas (lube oil system).
  2. Sistem bahan bakar (fuel system).
  3. Sistem pendingin (cooler system).
  4. Sistem udara kontrol (air control system).
  5. Sistem udara servis (air service system).
  6. Sistem hidrolik (hydraulic system).
  7. Sistem udara tekan (`ir pressure system).
  8. Sistem udara pengkabutan (atomizing air system).

Manfaat Pembangkit Listrik Tenaga UAP (PLTU)

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjxjQNakRmC2ldBlZDmEiIyoFS66XDCRjumFKAKTgvwKup41V7e2BbOv6gf4aT3chNw-Zs3gl6lM9jN4JRgEJMuGq5dVTN9vNvlAOvs_Nnt2XYTL9QYPN2W0aWFDfz9VrOxWVbdYr5pky5J/s1600/5.jpg
Pembangkit Listrik Tenaga Uap (PLTU) berbahan bakar batubara memiliki dua reputasi yang saling bertolak belakang. Di satu fihak PLTU betubara mempunyai reputasi baik karena mampu memproduksi listrik dengan biaya paling murah dibandingkan sistim pembangkit listrik lainnya. Biaya operasi PLTU batubara kurang lebih 30 persen lebih rendah dibandingkan sistim pembangkit listrik yang lain. Namun di lain fihak, PLTU batubara juga mempunyai reputasi buruk karena merupakan sumber pencemar utama terhadap atmosfer kita.

Selama ini reputasi bahan bakar fosil, terutama batubara, memang sangat buruk apabila dikaitkan dengan masalah pencemaran lingkungan seperti yang baru-baru ini terjadi di cilacap terkait dengan flay ash batu bara yang beterbangan kerumah penduduk disekitar penampungan flay ash batu bara. Walaupun stasiun pembangkit listrik batubara saat ini telah menggunakan alat pembersih endapan (presipitator) untuk membersihkan partikel-partikel kecil dari asap pembakaran batubara, namun hal yang harus sangat diperhatikan adalah senyawa-senyawa seperti SOx dan NOx yang berbentuk gas dengan bebasnya naik melewati cerobong dan terlepas ke udara bebas. Kedua gas tersebut dapat bereaksi dengan uap air yang ada di udara sehingga membentuk H2SO4 (asam sulfat) dan HNO3 (asam nitrat). Keduanya dapat jatuh bersama-sama air hujan sehingga mengakibatkan terjadinya hujan asam. Berbagai kerusakan lingkungan serta gangguan terhadap kesehatan dapat muncul karena terjadinya hujan asam tersebut.

Fenomena hujan asam sebetulnya sudah dikenali oleh para pemerhati lingkungan sejak tahun 1950-an. Namun masalahnya menjadi bertambah parah seiring dengan semakin meningkatnya permintaan energi listrik yang disuplai melalui PLTU batubara. Masalah hujan asam mungkin akan merupakan masalah lingkungan jangka panjang yang teramat serius. Hujan asam bisa juga menjadi isu politik besar terutama karena sumber asal dan para korbannya sering berada di tempat yang berbeda. Bahan pencemar NOx dan SOx dapat bergerak terbawa udara hingga ratusan bahkan ribuan kilometer, mencapai lintas batas antar negara.

Dalam keadaan udara bersih, air hujan bersifat agak asam dengan derajad keasaman (pH) 5,6. Penyebab keasaman ini adalah adanya senyawa carbon dioksida (CO2), suatu senyawa alamiah penyusun udara yang dalam air hujan membentuk asam lemah. Senyawa ini dikeluarkan baik oleh manusia, hewan maupun tanaman melalui sistim pernafasan. Air hujan dikatagorikan sebagai asam apabila nilai pH-nya di bawah 5,6. Air untuk konsumsi manusia harus memiliki nilai pH antara 6-9. Asam dalam air hujan menambah kemampuan air itu untuk melarutkan dan membawa lebih banyak logam-logam berat keluar dari tanah, seperti merkuri (Hg) dan aluminium (Al). Air asam ini juga dapat melarutkan tembaga (Cu) dan timbal (Pb) dari pipa-pipa logam untuk menyalurkan air. Peristiwa ini tentu saja akan menggganggu persediaan air untuk konsumsi manusia. Air dengan pH 5 menyebabkan beberapa ikan tidak mampu berkembang biak. Pada pH sekitar 4,5, ikan lenyap dari perairan. Sedang pada pH 4, perairan menjadi tanpa kehidupan. Pada pH mendekati 3, daun tanaman menjadi rusak. Di berbagai belahan dunia, manusia mulai semakin menyadari perlunya menyelamatkan lingkungan hidup. Tindakan-tindakan protektif kini sedang digiatkan untuk melindungi sumber-sumber alam yang tak ternilai harganya ini dari kehancuran total.

Dewasa ini manusia di berbagai belahan dunia mulai sadar akan perlunya menyelamatkan lingkungan dengan cara mereduksi maupun menjinakkan polutan-polutan yang terlepas ke lingkungan. Beberapa negara maju telah mengeluarkan peraturan sangat ketat dan menanamkan investasi cukup besar dalam rangka mengurangi polusi udara dari gas buang. Untuk penyelesaian jangka panjang, salah satu cara yang dapat ditempuh untuk menghindari terjadinya hujan asam adalah dengan menghentikan sumber hujan asam tersebut.



Tidak ada komentar:

Posting Komentar